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Abstraet--A detailed parametric study is conducted of dispersion and polydispersity of liquid drops in 
stationary isotropic turbulence via direct numerical simulation. It is assumed that the flow is very dilute 
so that the effect of particles on the carrier fluid is negligible (one-way coupling). Both non-evaporating 
and evaporating drops are simulated; in the latter both constant and variable rates of evaporation are 
considered. The simulations of non-evaporating drops are used to validate the numerical methodology 
and to assess the effects of the particle time constant and the drift velocity on the particle velocity 
autocorrelation, turbulence intensity and diffusivity. The simulated results are also used to appraise the 
performance of some of the available theoretical models for particle dispersion in stationary isotropic 
turbulence. The effects of the initial drop time constant, the initial evaporation rate, and the drop Schmidt 
number on the probability density function (pdf) of the drop size are studied. It is found that, after an 
initial transient period the pdf of the drop size becomes nearly Gaussian. However, the pdf deviates from 
Gaussian as the mean drop time constant becomes very small. The extent of this deviation depends on 
the evaporation rate. The effect of the initial spray size on the pdf is also studied and it is shown that 
as the spray size increases, the interaction between the spray and large scale turbulence structures 
influences the pdf. The effect of the initial size distribution on the pdf is also investigated by varying the 
initial standard deviation. Both Gaussian and double-delta initial drop size pdfs are considered. In the 
latter it is shown that a transition to Gaussian is possible provided that the initial mean drop time constant 
is large and/or the initial standard deviation of the drop diameter is small. © 1997 Elsevier Science Ltd. 
All rights reserved. 
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1. I N T R O D U C T I O N  

Dispers ion  o f  heavy part icles  in tu rbu len t  flows has been the subject  o f  numerous  invest igat ions  
in recent  years  due to its app l ica t ions  in var ious  aspects  o f  technology  (Ea ton  and Fessler  1994; 
McLaug l in  1994). One o f  the early theoret ica l  studies o f  par t ic le  d ispers ion in turbulence  is due 
to Tchen (1947) who derives re la t ions  for the par t ic le  diffusion coefficient under  the a s sumpt ion  
that  the par t ic le ' s  ne ighbour ing  fluid does not  change in the course o f  its mot ion .  Yudine  (1959) 
clarifies the consequences  o f  this a s sumpt ion  by analyzing the mo t ion  o f  heavy part icles  in the 
presence o f  gravi ty  and shows that  as the heavy par t ic le  is t r anspor ted  under  the influence o f  the 
external  body  force, its t ra jec tory  crosses tha t  o f  the ne ighbour ing  fluid par t ic le  which is not  
affected by the gravity.  This  is referred to as the "cross ing t ra jector ies  effect". Csanady  (1963) 
poin ts  out  the "con t inu i ty  effect" which is associa ted  with the crossing t ra jector ies  effect in the 
presence o f  gravity,  and  results in the reduct ion  o f  the velocity au tocor re l a t ion  in di rect ions  no rma l  
to the gravi ty  d i rec t ion  in compar i son  to that  in the gravi ty  direct ion.  Fu r the r  re la t ions for the 
velocity au tocor re la t ion ,  the diffusion coefficient and  the turbulence  intensi ty o f  par t ic le  loaded  
tu rbu len t  flows are  ob ta ined  by assuming  either the fluid velocity au tocor re l a t ion  a long the par t ic le  
t ra jec tory  (Reeks  1971; Pismen and  Ni r  1978) or  the fluid spectral  densi ty  funct ion ( M e i e t  al. 1991). 

Exper imenta l  studies o f  par t ic le  d ispers ion  in tu rbulen t  flow are p ioneered  by Snyder  and Lumley  
(1971) who invest igate d ispers ion  character is t ics  o f  solid part icles.  They  find that  the par t ic le  inert ia  
decreases its turbulence  intensi ty  in compa r i son  to the fluid turbulence  intensity.  Wells  and  Stock 
(1983) s tudy  the effects o f  cross ing t ra jector ies  in a homogeneous  decaying  tu rbu len t  flow. Using  
an electric field, they succeed to e l iminate  or  enhance the effects o f  gravity,  and  indicate  that  the 
long t ime asympto t i c  par t ic le  diffusion coefficient is p r imar i ly  affected by the dr i f t  velocity and that  
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the particle time constant is mostly effective in modifying the particle turbulence intensity. The 
experimental and numerical results of Wen et  al. (1992) in shear flows show that particles with 
large response times are centrifuged toward the outer edges of the vortex structures resulting in 
higher particle diffusivity coefficients. 

Experimental studies of evaporating drops are somewhat limited in comparison to those of solid 
particle dispersion. Previous studies have been mostly directed to assess the performance of 
turbulence models in multiphase flows. Shearer et al. (1979) conduct experiments on axisymmetric 
particle-laden jet flows to appraise the performance of a locally homogeneous flow model for 
evaporating sprays. A somewhat similar experiment is conducted by Solomon el  al. (1984) with 
different loading ratios. Further laboratory and numerical experiments are conducted by Nguyen 
et  al. (1991) who investigate the effects of the interactions among the drops on the drag force and 
the evaporation rate. 

The important role of the small scales of the carrier phase in the dynamics of heavy particles 
has motivated the use of direct numerical simulation (DNS). The implementation of DNS in 
two-phase flows is pioneered by Riley and Patterson (1974) to investigate particle dispersion in 
decaying isotropic turbulence. Using a low resolution simulation (323 grid points) and a relatively 
small number of particles (432), they find that an increase of the particle inertia increases the 
velocity autocorrelation. McLaughlin (1989) simulates particle deposition in a channel flow and 
shows the tendency of particles to accumulate in the viscous sublayer. Squires and Eaton (1990, 
1991a, 1991b) simulate both stationary and decaying turbulence fields with one- and two-way 
coupling. The results show the increase of the eddy diffusivity of heavy particles over that of the 
fluid particle for cases with one-way coupling. In the cases with two-way coupling they find that 
the fraction of energy at high wavenumbers of the spatial energy spectrum of turbulence increases 
relative to that at low wavenumbers as the mass loading ratio is increased. They also find that large 
particles tend to collect preferentially in regions of low vorticity and high strain. This is also true 
for the cases with one-way coupling. Elghobashi and Truesdell (1992, 1993); Truesdell and 
Elghobashi (1994) conduct similar studies. They consider the full equation for the particle motion 
and show that the Stokes drag is of primary importance for large density ratios. In the presence 
of both gravity and two-way coupling they show that energy is transferred from the gravity 
direction to other directions by the pressure strain correlation. The settling velocity of heavy 
particles in isotropic turbulence is studied by Wang and Maxey (1993) for different particle time 
constants and drift velocities. The results show an increase of the settling velocity for all cases. The 
maximum increase in settling velocity is obtained when both the particle time constant and the drift 
velocity are comparable to the Kolmogorov scales. 

This paper deals with the problem of dispersion and polydispersity of evaporating drops in an 
isotropic turbulent flow via DNS. The DNS generated data are statistically analyzed to extract 
important physical information pertaining to turbulent dispersion of evaporating drops. While the 
polydispersity phenomenon caused by evaporation is the primary subject of this study, some issues 
pertaining to dispersion of nonevaporating drops (solid particles) are also considered. In this 
consideration, a detailed parametric study is conducted and the results are comparatively assessed 
via existing analytical, experimental and, if applicable, DNS results. This assessment is very useful 
for validations of our computational methodology and for the parameterization in the evaporating 
drops simulations. In section 2 the problem formulation and numerical technique are described, 
in section 3 the DNS results are analyzed: the summary along with concluding remarks are 
furnished in section 4. 

2. PROBLEM FORMULATION AND NUMERICAL TECHNIQUE 

Since this is the first attempt in DNS of the evaporating drop dispersion in turbulent flows, the 
problem is formulated based on models and correlations which are well established. The 
implementation of these models requires several simplifying assumptions: these are discussed in this 
section within the framework of the mathematical formulation. We consider motion of spherical 
particles in an incompressible and isotropic turbulent flow. It is assumed that the dispersed phase 
is very dilute, thus the effect of particles on the carrier fluid is negligible. The momentum equation 
for each particle is considered in the Lagrangian frame of reference. In general, this equation 
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contains the Stokes drag, the Basset force, the force due to fluid pressure gradient, the inertia force 
of added mass, and gravity (Maxey and Riley 1983). However, the results of several previous 
studies, e.g. Elghobashi and Truesdell (1992), indicate that if the ratio of the density of the particle 
to the density of the carrier fluid is large, the Stokes drag and the gravity forces are dominant and 
the other forces can be assumed negligible. With this assumption the momentum equation for a 
single particle is expressed as: 

dv 18p (u - v) + ge, [1] 
dt - pp~ 

dX 
d t  v ,  [2] 

where u and v (boldface indicates vector) denote the fluid velocity at the particle location and the 
particle velocity, respectively; t is time, X is the center position of the particle, e is the unit vector 
in the gravity direction, g is the gravity constant; pp and dp denote the particle density and diameter, 
respectively; and p is the fluid viscosity. All of the variables are normalized by reference scales of 
length, L0, velocity, U0, and density, p0. The length scale is conveniently chosen such that the 
normalized size of the simulation box is 2~ and the velocity scale is found from the box Reynolds 
number, Re0 = (p0UoL0/p). The fluid density is used as the scale for density. 

In the simulations of non-evaporating (solid sphere) particles, the particle diameter remains 
constant. For the evaporating particles, the rate of diameter reduction is modeled by the d2-1aw 
(Strehlow 1985): 

= - [ 3 ]  

where dp0 is the initial diameter of the particle and the depletion rate is given by 
K = 8F ln(1 + BM)CRe, where F is the mass diffusivity coefficient and BM is the transfer number 
(Spalding 1953). The parameter CRe is a correction factor to account for the convective effects (Ranz 
and Marshall 1952): 

0 5 0.333 CRe= 1 +0 .3Re  v Scp , [4] 

with Rep and Scp representing the particle Reynolds and Schmidt numbers, respectively. It is 
assumed that the flow is isothermal and that evaporation is due to a constant temperature difference 
between the drop and the fluid. This model is in accord with that of several laboratory experiments 
(e.g. Shearer et al. 1979). In a dilute flow, the ratio of the mass of the particle to the mass of the 
carrier fluid is very small and it is assumed that all the particles are in contact with the carrier fluid 
during evaporation. Therefore, the variation of ~c is only due to CRo. The "particle time constant" 
(Tp) is defined by: 

18# = Tp0 - Tot, [5] 

where zp0 = (ppd2p0/18p) denotes the initial particle time constant, and: 

4ppF ln(1 + BM). [6] 17e ~ CRe'Ce0~ ~'e0 -~- 

By introducing a drift velocity, Vdr = Zpog, [1] is expressed as: 

dv 1 1 Vdre. [7] - - v )  + 
dt 

The particle Reynolds number is defined as :  Rep  = (p fd p [u  - -  vl)//A with pf denoting the carrier fluid 
density. Following Wang and Maxey (1993) the Reynolds number is related to the Kolmogorov 
time (Zk) and velocity (vk) scales with v = TkV~, where v = ]A/pf is the fluid kinematic viscosity: 

f 18Tp \ f \ // \ / 
|1"21u --v[ = 4.243[pr]1Z[ZP| 'zlu -- [8] V[ 

Rep = \vp-'-~f) k, Pp,/ k, TkJ Vk 
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The density ratio is kept c o n s t a n t  (pf/pp = 10 -3) in all the simulations. 
With the assumption of dilute particles, the Eulerian equations governing the carrier gas 

transport are solved independently to determine the u-field. With the assumptions of 
incompressible, isothermal flows this field influences dispersion, but not the other way around (i.e. 
one-way coupling). Also, the possible corrections to the convective effects in the drop evaporation 
due to flow unsteadiness, and the modifications of the drag force due to drop evaporation are not 
considered. The DNS of the carrier fluid is based on a spectral collocation scheme involving Fourier 
basis functions (Givi and Madnia 1993). The turbulent flow is assumed isotropic with triply 
periodic boundary conditions, and is forced at low wavenumbers to maintain a stationary 
(non-decaying) turbulent field (Givi 1989). Equations [1] and [2] are integrated in time using a 
second order accurate Runge-Kutta  numerical scheme. The fluid velocity at the particle location 
is evaluated by a fourth order accurate Lagrange four point interpolation scheme. 

3. RESULTS 

Table 1 provides a listing of the flow parameters considered in the simulations. In this table, Re~ 
is the flow Reynolds number based on the Taylor length scale (Z) and the root mean square of 
the flow velocity (u'), km,x denotes the highest resolved wavenumber after deailiasing, q represents 
the Kolmogorov length scale, u' is the root mean square of fluctuating velocity, and l is the integral 
length scale determined from the energy spectrum E(k): 

r '~ E ( k )  
l =  2u, 2 ~o k dk .  

The parameters listed in table 1 are used in the simulations of both non-evaporating and 
evaporating drops. All the simulations are performed on 643 collocation points. In order to 
determine the appropriate number of particles, some preliminary simulations are conducted with 
163, 213, and 253 particles. In agreement with the results of similar tests performed by Elghobashi 
and Truesdell (1992) it is found that 213 particles provide sufficient accuracy. In the simulations 
of the non-evaporating and constant rate evaporating particles, 213 particles are tracked. In the 
simulations of variable rate evaporating particles 253 particles are considered. In the discussion 
below ((.)) and ( . )  denote the Lagrangian and Eulerian average values, respectively. The time 
averaged quantity is denoted by an overbar. In the presentation of the results, time is normalized 
with the eddy turn over time, l /u' .  

3.1. Dispersion o f  non-evaporat ing  part ic les  

The purpose of simulations considered in this subsection is threefold: (1) to validate our present 
computational methodology by comparison with previous DNS results, (2) to appraise the 
performance of some of the recent models via comparative assessment with present DNS results, 
and (3) to identify the range of Parameters in the evaporating drop simulations (discussed below) 
and to compare present results with those in the presence of evaporation. 

In the simulations here, the particles are initially distributed uniformly within the box and are 
released with the same velocity as that of the local fluid particle. In order to obtain stationary 
conditions, the particles are allowed to interact with the flow for more than three eddy turnover 
times before data are extracted for statistical analysis. A measure of stationarity is the temporal 
variation of ((Reo)) as shown in figure 1 for four different rp values with zero gravity. This figure 
shows that a nearly stationary level is reached after an initial steep increase with a noticeable 
overshoot for cases with ro > zk. The magnitude of ((Rer)) at the stationary condition increases 
with the increase of rp due to the larger slip velocity experienced by heavier particles. 

Table 1. Flow parameters used in the simulations 
Re~ rlk .... r~ ~ u" I 

41 1.41 8.229 5.72 x 10 ~ 0.019 1.068 
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Figure 1. Temporal variation of ((Rep)) for different values of the particle time constant. 

It is useful to consider the Fourier transform of [7] (Chao 1964). This transform in time for 
w = v - Vdre yields: 

E~,j (o9) 1 
Ef0(og)- 1 + z~o92' [9] 

where the spectral density function of  the fluid velocity evaluated on the particle trajectory is 
ff, j(og) = ((~i(og)~* (o9))) (^ indicates the variable in the Fourier space, * denotes complex conjugate, 
and e9 is the frequency), and ~ (o9) = ((ff~(og)ff* (co))) is the spectral density function of  the particle 
velocity. The decrease of  the ratio of  E~0(o9 ) to ff, j(og) with the increase of Zp indicates that heavy 
particles have a less tendency to adjust to the flow fluctuations. Equations [9] also shows that E~,/(og) 
deviates more from ff0(og) as o9 increases. Therefore, the ability of the heavy particle to follow the 
fluid fluctuations decreases at high frequencies. 

Mei et al. (1991) obtain a solution for the particle turbulence intensity ((w2)), and the particle 
diffusion coefficient, c o , by assuming the form of  the spectral density function as proposed by 
Kraichnan (1970). They consider contributions of all the forces acting on the particle but suggest 
that only the Stokes drag and the Basset forces need to be retained. Their final results for cases 
in which the Basset force is neglected, are compared with our DNS data as will be presented below. 
However, it should be mentioned that although Mei et al. (1991) consider a wide range of zp and 
vd, values, our DNS results indicate (not shown) that for rp > 5Zk and Vd, > 5Vk the particle Reynolds 
number becomes considerably larger than unity and is beyond the range of  validity of the Stokes 
drag. Therefore, we limit our parameter range to Zp <~ 5Zk and vdr ~< 5Vk. 

Figure 2 shows the particle velocity autocorrelation for four particle time constants at different 
drift velocities. The autocorrelation of the fluid particle (zp = 0) is also shown for comparison. The 
velocity autocorrelation is defined as: 

( (w, (O)w,( t ) ) )  
R ~ , ( t ) -  ((w~(O))) ~t ~- 1,2,3 [10] 

where ct refers to the coordinate direction (with no summation over repeated Greek indices). In 
order to reduce the effect of anisotropy, the autocorrelations are calculated by averaging over the 
three directions. These averaged autocorrelations are denoted by R p (no subscripts). In cases with 
a non-zero drift velocity, three different simulations are performed for each case (using the same 
velocity field for the fluid) with the gravity direction changing for each simulation. Therefore, the 
velocity autocorrelation in the gravity direction is evaluated by averaging over the three gravity 
directions, and those in no-gravity directions are averaged over six other directions considered in 
three simulations. Inspection of  figure 2 reveals that variations of  the particle velocity 
autocorrelation with the particle time constant and the drift velocity are in accord with previous 
observations (e.g. Csanady 1963; Wells and Stock 1983). 
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The variations o f  the particle turbulence intensity ((w2)) (normalized by the fluid turbulence 
intensity (u2)) due to the particle time constant  and the drift velocity are shown in figure 3 and 
are compared  with theoretical results o f  Mei et al. (1991). The temporal  averages are evaluated 
by data sampling over more  than three eddy turnover times. This figure indicates that, as the 
particle time constant  is increased the particle turbulence intensity is reduced. In other words, the 
increase of  the particle time constant  decreases the drop tendency to follow the fluid motion.  As 
rp is decreased, ~I~'2~/(L12~ approaches unity. This is expected since w, = u~ for rp = 0. Al though 
we have not  performed simulations with rp < 0.4zk, the results suggest the existence of  a plateau 
for t,a~ = 0 near Tp = 0. This is also observed in the results o f  Mei et al. (1991). 

Compar ing  the values of  ((w2))/(u 2) in the no-gravity direction for vd~ = ~'k and t~a~ = 5t'k with 
those obtained for { ! d r  ~ - - -  0 indicates the decrease of  the particle turbulence intensity with the increase 
o f  gravity. Particles moving in the presence of  a gravity field have a shorter time to interact with 
the instantaneous surrounding fluid particles in compar ison with the particles moving in the zero 
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Figure 2. Particle velocity autocorrelations in the direction normal to the gravity direction. (a) t',,, = 0, 
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gravity environment. However, as the particle time constant approaches zero ,  ((w2))/(u2). 
approaches unity for all the Vdr values. This is due to the increase of particles' tendency to follow 
the fluid particle motion as the particle time constant is decreased. Figure 3 also shows that at a 
given particle time constant the turbulence intensity of the particle in the gravity direction is larger 
than that in the direction normal to the gravity direction. 

Of central importance in the study of turbulent particle dispersion is the particle diffusion 
coefficient defined as (Hinze 1975): 

l d  
:~(t) = ~  ((X~,(t))) ~ = 1,2,3. [11] 

For stationary particles, this coefficient is related to the velocity autocorrelation by: 

;0 E~,(t) = ((w~(0))) R~,(r)dr = ((w,(0)w~(r)))dr. [12] 

The fluid particle diffusion coefficient E~,, is defined similarly by replacing w, with u, in [12]. Figure 4 
shows the variations of the "asymptotic diffusion coefficient", : (oo) with the particle time constant 
and the drift velocity. Equation [12] is used for the determination o f :  and the results are averaged 
in the three directions. Several observations are made from this figure: (i) in the absence of gravity 
(Vdr = 0) a peak is observed near zp = rk. The DNS results of Squires and Eaton (1991a) in 
stationary turbulence also show a similar behavior. However, this is in contrast to the analytical 
results of Pismen and Nir (1978) and Mei et al. (1991) which show a monotonic variation for : ( ~ )  
with zp. Squires and Eaton (1991a) attribute the difference between the analytical and DNS results 
to the sensitivity of the numerical results to the sample of large scale motions in forced turbulence; 
(ii) the increase of the drift velocity decreases the particle diffusion coefficient in both parallel and 
normal directions to the gravity direction. This behavior is also predicted by the models of Csanady 
(1963) and Mei et al. (1991); (iii) the diffusion coeffÉcients are larger in the gravity direction than 
those in the direction normal to the gravity direction; however, the difference decreases with the 
increase of zp; (iv) in agreement with the experimental results of Wells and Stock (1983) the 
asymptotic diffusion coefficients are more sensitive to the drift velocity than to the particle time 
constant. 

Figure 4 also indicates that as the particle time constant approaches zero, for a constant drift 
velocity, the particle diffusion coefficient does not equate that of the massless fluid particle. This 
is in contrast to the behavior of the particle turbulence intensity which approaches the fluid 
turbulence intensity as zp---* 0 (cf. figure 3). A decrease of the particle time constant, while the 
magnitude of the drift velocity is kept fixed, corresponds to an increase of the gravity coefficient. 
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Very small particles have small relative velocities and are capable of responding to local fluid 
fluctuations instantaneously. This results in the adjustment of the particle turbulence intensity to 
that of the fluid. However, since the effect of gravity on the carrier phase is neglected, by having 
a finite drift velocity the particles move quickly through the vortical structures. This decreases the 
particle velocity autocorrelation and therefore the diffusion coefficient. 

3.2. Polydispersity of evaporating particles 

One of the major differences between non-evaporating and evaporating particle dispersion 
phenomena is the lack of a stationary condition in the latter. When evaporating, the magnitude 
of rp continuously decreases with time; thus the momentum transfer between the particle and the 
surrounding fluid is in a transient condition. At a constant gravity level, the problem of evaporating 
particle dispersion is parametrized by: the initial particle time constant (rp0), the initial rate of 
evaporation (r~0), and the particle Schmidt number (Scp). In addition, due to the intrinsic 
non-stationary nature of the problem, the effects of initial conditions should also be considered. 
In the following simulations, the largest evaporation rate is chosen such that the velocity 
autocorrelation becomes close to zero by the time rp = 0. I rp0 (about 3.1 eddy turnover times). Very 
low rp values are not considered to avoid excessive computational requirements for particle 
tracking. Therefore, we set zo0 = 0.9r0~/3.1 = 0.29r~ where r~ is introduced to relate the evaporation 
rate to the initial particle time constant. 

First, we consider cases with constant rate of evaporation in which the decay of zp is the same 
for all particles. These cases are exemplified by neglecting the nonlinear term in [4], i.e. CR~ = 1. 
Figure 5 shows the velocity autocorrelation for evaporating particles, The autocorrelation of 
non-evaporating particles (r0~ = 0) is also presented for comparison. The initial position and 
velocity of the particles are taken from the simulations of nonevaporating particles at the same 
particle time constant. Therefore, the particles are stationary at time t = 0 before the onset of 
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Figure 4. Variation of the diffusion coefficient for the heavy" particle (hollow symbols) and lhe surrounding 
f l u i d  p a r t i c l e  ( s o l i d  s y m b o l s )  w i t h  t h e  p a r t i c l e  t i m e  c o n s t a n t :  (a)  in  t h e  d i r e c t i o n  n o r m a l  t o  t h e  g r a v i t y  
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Figure 5. The velocity autocorrelation for the heavy particle at various evaporation rates for Tpo = 5~k. 

evaporation. The initial particle time constant is Zpo = 5zk, and with a rate of evaporation of 
zec = 5Zk the magnitude ofzp is reduced to 0.5zk by the end of the simulation. As expected, a decrease 
of the particle time constant results in the decrease of its velocity autocorrelation; the larger the 
evaporation rate the smaller the velocity autocorrelation at all times. 

An important issue to address at this point is the speed of  adjustment of  the velocity of the 
evaporating particle to that of its surrounding fluid. As indicated in figure 1 when particles are 
released with a zero velocity relative to the fluid, there is a time delay before the average particle 
Reynolds number reaches a stationary value. Therefore, a comparison of the magnitude of  ((Rep)) 
of the evaporating particle with those of the stationary non-evaporating particle at the same Zp 
provides a reasonable indication of the speed of momentum adjustment. For  the highest 
evaporation rate (Z¢c=5Zk) shown in figure 5, ((Rep)) ('Cp-----3Zk)=0.585 and ((Rep)) 
(zp = Zk) = 0.173. These values are very close to those for stationary non-evaporating particles at 
the same particle time constant (0.589 and 0.172, respectively). This suggests that evaporating 
particles adjust quickly to their new conditions. 

For  a constant particle Schmidt number, the rate of  evaporation becomes dependent on the 
magnitude of  the particle Reynolds number and is different for each particle. Therefore, even with 
an identical initial zp value, the evaporation process results in polydispersity of drops. The 
remainder of this section is devoted to the study of  the properties of  the drop size distributions 
for different values of  the particle time constant, the evaporation rate, and various initial 
conditions. 

Figure 6 shows the temporal evolutions of the probability density function (pdf) of the variable 
zpt.,2 (proportional to the particle diameter). In this simulation, zpo = 5zk, z~ = 5Zk, and Scp = 1.0. 
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Figure 6. Pdfs of z~/2 at different times for ~) = 5zk, z,¢ = 5zk, and Scr = 1. 
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Figu re  7. T e m p o r a l  va r i a t i ons  o f  ((Tp/z~)) a n d  (((zp/Zr~)~2)) for  d i f ferent  initial  par t ic le  t ime c o n s t a n t s  a n d  
e v a p o r a t i o n  rates.  

The particles start to evaporate from a stationary condition at time t = 0, when the pdf  is a delta 
function. At longer times the mean shifts towards smaller r~p : values due to reduction of the particle 
size. The variations of  (((zp/%0)J/2)) and ((%/%o)) are shown in figure 7 for simulations in which three 
different groups of particles are considered; %o = 5rk, 2rk, and 0.5rk with corresponding initial 
evaporation rates of  rec = 5rk, 2rk, and 0.5zk, respectively. Equation [5] indicates that for a constant 
rate of  evaporation, rp decreases linearly with time. When the evaporation rate is variable, a 
deviation from the linear behavior is expected. However, figure 7 shows that for the cases 
considered here the deviation is relatively small. This is mainly due to the one-way coupling 
assumption. Obviously, larger particles show a more nonlinear behavior than the smaller ones due 
to their larger Rep values. The magnitude of the particle diameter decreases nonlinearly from the 
beginning and the rate of nonlinearity increases with time. This is easily explained by comparing 
the rate of  change of rp and z~.2. For  a constant rate of  change of rp (which is a reasonable 
assumption for the cases considered here), d ( z ~ ' 2 ) / d t  ~ constant/r~p '2. Therefore, the rate of  the 
diameter decrease becomes larger as the size of  the particle is reduced. Notice that although the 
initial evaporation rate for each group has been chosen proportional to its initial particle time 
constant, the curves of  ( ( ( ~ . p / , [ . p ( ) ) l  2 ) )  and ( ( ' ~ p / ~ ' p 0 ) )  for different groups of particles are not identical. 
This is due to the nonlinear variation of Rep with rp as observed in figure 1. When % is increased 
by a factor of  10, the corresponding ((Rep)) is increased by a factor of about 15. 

Shortly after the onset of  evaporation, a wide range of droplet sizes is observed. In figure 8 the 
pdfs of  ztp:2 are considered at an intermediate time (t = 1) and are shown to be close to Gaussian 
for all the cases. In figure 9 the temporal variations of the skewness and the kurtosis of  the pdfs 
for the three cases are considered. At short times the pdfs are skewed towards the smaller sizes 
while at intermediate times they become more symmetric. Although the differences in Rep for the 
particles is responsible for the generation of size distribution at each time, the mechanism which 
results in variation of Rep is different at short and at long times. At short times, the diameters of 
all the particles are approximately the same and the changes in Re r are due to the differences in 
the spatial locations of  the particles. At long times, the differences in Rep are also dependent on 
the size variations. In general, at intermediate times the pdf of the particle size is approximately 
Gaussian. However, the larger the initial particle time constant, the closer the pdf is to Gaussian. 
This is evident from figure 9 that shows larger deviations from Gaussian skewness and kurtosis 
values as the initial size of the particles is decreased. Larger particles with rp,, = 5rk and 2rk attain 
pdfs with slightly positive skewness after about one eddy turnover time. The skewness of the 
particles with z00 = 0.5Zk remains negative for the entire simulation. In general, for large particles, 
after an initial transient time which depends on the particle size the pdfs become very close to 
Gaussian. But near the end of the simulations again the pdfs start to deviate from Gaussian. In 
fact, when the skewness and the kurtosis of  different cases are plotted versus the instantaneous 



D R O P L E T S  I N  S T A T I O N A R Y  I S O T R O P I C  T U R B U L E N C E  3 4 7  

0 
10 . . , . . . , . • . , . . 

1 0  - 1  

10 .2 

10 -3 

10 .4 

t = l  • 

- -  Gaussian 

- ~  -2 0 2 
1/2 1/2 . .  1 /2  'l:p -<<I:[, >>)/<<'~F, >>  

z_~ for different par t ic le  t ime cons tan t s  and  evapora t ion  rates at  t = 1. F igure  8. Norma l i zed  pdfs  of  % 

mean particle time constant, the pdfs become more non-Gaussian as ((%)) becomes smaller than 
rk. This is due to nonlinearity of  the rate of  decrease of  r~2 at small particle time constants. As 
indicated above, as the size of  the drop decreases, the rate of  change of  its diameter increases and 
figure 7 shows that this effect is more pronounced when the drop time constant is small. Therefore, 
the diameters of  the smaller drops decrease faster than the diameters of  the larger drops and the 
pdf  becomes skewed towards smaller diameter values. 

We now consider the pdfs of  particles with different initial evaporation rates. In figure 10 the 
temporal variations of  the skewness and kurtosis for particles with %o = 5rk and initial evaporation 
rates of  r0~ = 5~k, 2.5rk, zk, and 0.4rk are presented. The initial condition for these particles is 
different than those considered earlier. At t = 0 the particles are released with a zero velocity 
relative to the local fluid particle. An initial transient time is needed before the particles attain 
momentum equilibrium with the flow. Figure 10 indicates that this initial transient time appears 
independent of  the rate of  evaporation and is about the same as that required by the 
non-evaporating particles with zp = 5rk to reach the stationary condition (cf. figure 1). After the 
momentum equilibrium is reached, the pdfs of  z~ -~ tend to become Gaussian. Towards the end of 
the simulation, the pdfs for cases with higher evaporation rates ( ~  = 5rk and r~ = 2.5r0 become 
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Figure  9. Tempora l  var ia t ions  of  the kur tos is  and skewness  of  r~',-'. 
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s t rongly non-Gauss ian .  However ,  as the evapora t ion  rate decreases the pdfs tend to remain 
variances for cases with smaller evapora t ion  rates. Gaussian.  This is due to the smaller rp 

Therefore,  as the evapora t ion  rate is decreased a " n a r r o w e r "  p d f  is obta ined and the difference 
between the diameters  of  different drops  is decreased. This, in turn, diminishes the effect o f  the 
nonlineari ty  of  the rate of  change of  d iameter  which tends to skew the pdfs. 

Effect of particle Schmidt number. The magni tude  of  the particle Schmidt number  influences the 
rate of  evapora t ion  as indicated by [4]. Figure 11 shows the tempora l  var ia t ion of  the Lagrangian  
average o f  the nonl inear  par t  o f  [4] for  two different particle t ime constants  and three Scp values. 
Two  different initial condit ions are considered: s ta t ionary (solid symbols)  and non-s ta t ionary  
(hollow symbols).  In non-s ta t ionary  cases, the initial particle velocity is zero relative to the local 
fluid; therefore,  the initial value of  ((CRe -- 1)) is zero. After  an initial increase, this value starts to 
decrease due to the decrease of  the particle size and consequent ly  the decrease of  the particle 
Reynolds  number .  The compar i son  of  the results in the s ta t ionary  and the non-s ta t ionary  cases 
at the same Scp = 1 reveals that  for large particles, the value of  ((CRe - 1)) in the non-s ta t ionary  
case overshoots  that  in the s ta t ionary  case. This is due to the variat ion of  Rep in t ime which 
experiences an overshoot  before it reaches a s ta t ionary  value (figure 1). For  small particles Rep does 
not  overshoot ,  and neither does ( (CR~-  1)). In general, the increase of  Scp enhances the 
contr ibut ion of  the nonl inear  par t  of  [4]; however,  for the cases considered here with Scp as large 
as 5 this cont r ibut ion  is always less than 50% of  the constant  evapora t ion  rate (((CRe -- 1)) < 0.5). 
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In figure 12 the temporal evolution of the variance of r~/2 is shown for three different particle 
Schmidt numbers. The initial particle time constant is Tp0 = 5Tk for all cases. As the particle Schmidt 
number increases the variance also increases. This means that at larger Scp, a wider range of particle 
sizes are present. At Scp = 5Tk the difference between the maximum and the minimum values at 
the end of the simulation is about  0.41 while the corresponding difference for Scp = 0.1 is about 
0.24. Therefore, while the minimum value of (Tp/Tp0) ~/2 at the end of the simulation is the same for 
both cases, the case with the higher Scp value contains a higher number of  larger particles. This 
is due to the fact that the increase of  Scp enhances the effect of  Rep on evaporation. The skewness 
of  the particle distribution towards smaller particles is also evident by comparing the distance from 
the mean value to the minimum and the maximum value at all times. Examination of the temporal 
variations of  the skewness of  Tp ~'2 revealed that, in all the cases, the skewness takes negative values 
at small times and then increases with time. For large zp0 values, the skewness reaches small positive 
values for intermediate times. But it decreases and takes negative values close to the end of the 
simulation when Tp values for most of  the particles become small. Particles with smaller Too values, 
have negative skewness during the entire simulation. In general, the effect of  the particle time 
constant is more significant than the particle Schmidt number on the skewness of  the particle 
sizes. 

Effect of  spray size. In many practical applications the size of  the spray is smaller than the 
characteristic size of  the flow. As the spray evolves with flow, dispersion of the particles is strongly 
affected by the interactions between the spray and the carrier fluid. It is expected that the size of 
the spray relative to the characteristic length scale of  turbulence plays an important role on 
dispersion. In the case of  evaporating particles this becomes even more important since the size 
distribution is also directly affected by the interaction between the droplets and the flow at different 
scales. In this subsection we investigate the effect of  the relative size of  the spray on the particle 
size distribution. We initialize the problem by randomly distributing the particles inside a cubic 
box which is located at the center of  the computational box. All particles have the same size and 
a zero velocity relative to the local fluid element at t = 0. The length of one side of  the 
particle-containing box is denoted by S and indicates the spray size. 

First we consider a case with initial spray size S,,/l = 0.28. In figure 13 the variations of  the 
kurtosis and skewness of T~ ~2 are shown for two different initial particle time constants. On the same 
figures the temporal variations of the spray size are also shown. This size is determined by the 
dimension of  the smallest box containing all of  the particles at any time. Figure 13 reveals that 
the kurtosis and skewness of  the particle size are very different from those corresponding to 
Gaussian. In contrast to the cases discussed earlier, the skewness is positive throughout the 
simulation. For both of the particle time constants considered, the growth of the spray size is nearly 
linear in time. This can be interpreted as a constant diffusion velocity which is about  the same in 
both cases. The normalized spray size increases from its initial value to a final value corresponding 
to the ratio of  the computational  box to the integral length scale. 
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Figure 13. Temporal variations of the kurtosis and skewness of r~z and spray size for Sop-  
,%/l = 0.28. (a) q,~ - 5zk and r~ = 5rk, (b) rr(, = 0.5zk and ~ = 0.5rk. 

and 

Next, we consider cases with different So/l values. Examination of the temporal variations of  the 
kurtosis and skewness of  zt.2 for cases with different So and %o values revealed that as the initial 
spray size is increased, the oscillations in the skewness and the kurtosis diminish and the values 
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Figure 14. Temporal variation of the variance of  ~2 for different initial spray sizes, rp(, = 5rk, r~ = 5rk 
and Scp = 1. 
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Figure  15. Tempora l  var ia t ion o f  the kurtosis  of  r~'" for different values o f  the initial s t andard  deviat ion.  
rp0 = 5rk, r~ = 5rk and  So/I = 0,28. 

approach those corresponding to the Gaussian distribution. Figure 14 shows the time variation 
,.2 for several values of Soil. The initial particle time constant and the of  the variance of ~p 

evaporation rate are ~0 = 5~k and voc = 5~k, respectively. As the initial spray size is increased, the 
instantaneous rate of  variance increase approaches an asymptotic value corresponding to the case 
with Soil = 1.96. This implies that if the initial spray size is larger than about twice the integral 
length scale, the effect of  the spray size on the variance is negligible. In general, three distinct regions 
are observed on the curves shown in figure 14. The first region corresponds to initial times 
0 < t < 0.3 during which the rate of  variance growth is very small. Since particles are released with 
zero relative velocity, they have the same initial Rep values and consequently the same initial 
evaporation rate. Therefore, at initial times the variance remains close to zero. As the particle 
Reynolds number increases, the particles experience different evaporation rates and the variance 
starts to increase. Figure 11 shows that the time interval 0 < t < 0.3 corresponds to the period 
during which ((CRe)) adopts large values. At large particle Reynolds numbers, in the second region 
of the curves of  figure 14 (0.3 < t < 2), the variance grows with a larger rate. The third region 
(t > 2) is marked by the largest rate of  variance growth. This is explained by considering figure 
7 which shows that the rate of  reduction of ~2 increases at large times when the size of  the particles 
is small. 

Effect of the initialparticle size distribution. The observed deviations of  the particle size pdfs from 
the Gaussian for small Soil values motivate the analysis of  cases with initial Gaussian diameter pdfs. 
These cases are characterized by the initial standard deviation of z~2 denoted by a0. The cases 
considered in previous subsections refer to ou = 0. The velocity and the position of the particles 
are initialized randomly similar to previous cases. The size of each particle is selected randomly 
from a Gaussian seed with specified values for the mean and the standard deviation. In order to 
prevent very small and very large particle time constants, the standard deviations considered are 
relatively small. 

Figure 15 shows the kurtosis of  ~2 for cases with several values of the initial standard deviation. 
The initial mean particle time constant is ((~p0)) = 5~k. The case with the smallest initial spray size 
(Soil = 0.28) is considered as the pdfs for this case deviate more from Gaussian; therefore, the 
effects of  the initial size distribution are amplified. As expected, by increasing the initial standard 
deviation, the pdf  becomes closer to Gaussian. For the range of ((~p0)) and Soil values considered 
here, a nearly perfect Gaussian pdf  is achieved when the initial standard deviation is o-0 = 0.07. 
The effect of  the initial standard deviation is more pronounced at early times. An interesting feature 
observed in figure 15 is the similarity of  the oscillations of the kurtosis curves for different cases. 
This verifies our previous observation in that these oscillations are due to interactions between the 
particles and the large structures of  the flow. Since the initial spray size is identical, a similar 
oscillation pattern is experienced in all the cases. 

Next, we consider the effect of  the initial spray size for a constant initial standard deviation of 
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Figure 16. Temporal variation of the kurtosis of z~o "- for different initial spray sizes, rr, = 5rk, r~ = 5z~ and 
o,, = 0.02. 

or0 = 0.02. Figure 16 shows the temporal  variat ion o f  the kurtosis o f  r~ 2. Similarly to the cases with 
or0 = 0, the pdf  becomes more Gaussian as the initial spray size increases. Cont ra ry  to the cases 
with the same So~l, the kurtosis curves o f  figure 16 are not  similar. The time of  the occurrence o f  
the first peak is decreased as the initial spray size is increased. This again is due to the interaction 
o f  the spray with the larger scales o f  the flow as the spray size increases. The examination of  the 
variance o f  r0 + (not shown) for different cases indicated that  the variance curves collapse for 
Sol1 ~ 1.4 when o0 = 0.02 in contrast  to Soil >~ 1.96 when a0 = 0. 

Finally, for completion,  several cases are considered with initially non-Gauss ian  drop size 
distributions. For  these cases, the initial distribution consists o f  two distinct uniform-size groups 
o f  drops (the initial pdf  o f  r~ :2 is a double delta). The drops are initially injected into the flow with 
zero velocity relative to the local fluid and Scp = 1. Figure 17 shows the temporal  evolution o f  the 
p d f o f r ~  '2 for a case with ((zr~)) = 5rk and o~ = 0.128. As indicated in the figure, by the time t = 0.52 
the two initially segregated branches o f  the pdf  start to merge resulting in the increase of  the Z~p 2 
kurtosis (figure 18). At  t -~ 2.35 the double -hump pdf  evolves into a single peak one; at the final 
time (t = 2.62), the pdf  is close to Gaussian.  However,  it is also possible that with a large initial 
separation between the drop time constants  (large o0) a single-hump pdf  is not  attained during the 
evaporat ion period. Figure 18 shows that as ((rp0)) is increased, for the same o0, the kurtosis o f  
r~/2 deviates less f rom that o f  Gaussian.  Inspection o f  the pdf  evolution for the case with ((rp0)) = 1 

0 . 0 8  . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , . . . .  , ' '  

0 . 0 6  

0.04 

t=0.52 

1.05 

1.57 ~ 
2.62 J~ J] 

o 

0 . 0 0  ' ' ' 
0 1 2 3 4 5 6 

~p 

Figure [7. Pdfs o f  z~ 2 at different times. The initial pdf  is double delta with drop time constants at 4.8z, 
and 5.2rk. zo. = 5r~ and Sop = l. 
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Figure 18. Temporal variation of the kurtosis of z~ '2 for different initial mean drop time constants and 
initial standard deviations. 

(not shown) indicates the persistence of the double-hump pdf  throughout the simulation. The effect 
of the variation of the initial standard deviation on the kurtosis is also shown in figure 18 for pdfs 
with ((%0)) = 5zk. As expected, the evolution from a double-hump pdf  into one with a single-hump 
is expedited with the decrease of a0. 

Based on these results, it is concluded that the evolution of the pdf  is very sensitive to several 
parameters, especially ((~p0)), zec, a0, and So/l. Based on the magnitudes of these parameters and 
the initial form of the pdf, several asymptotic (((%)) --+ 0) forms of the pdf are produced. It would 
be instructive to suggest a dynamic (or Langevin) equation governing the evolution of the dispersed 
phase pdfs in a carrier gas with a Gaussian velocity field. This equation must include the parameters 
identified here as model input. Construction of such a stochastic model is currently underway; the 
DNS results produced here are very useful in appraising the performance of such models. 

4. SUMMARY AND CONCLUDING REMARKS 

Results obtained by direct numerical simulation (DNS) are used to investigate dispersion of both 
non-evaporating and evaporating particles in dilute stationary isotropic incompressible turbulent 
flow. The evaporating case is considered with both constant and variable rates of evaporation. In 
the simulations of non-evaporating particles, the effects of the particle time constant and the drift 
velocity on the particle autocorrelation, turbulence intensity and diffusivity are investigated. In 
agreement with the results of previous studies, it is found that the increase of the particle time 
constant results in the increase of  the particle velocity autocorrelation and the decrease of its 
turbulence intensity. There is good agreement between the DNS results and the model of Mei et al. 
(1991) for the ratio of  the particle turbulence intensity to the carrier fluid turbulence intensity, in 
the absence of gravity. But the agreement diminishes as the value of the drift velocity is increased. 
The particle turbulent diffusivity is rather insensitive to the changes in the particle time constant 
in accord with the experiment of Wells and Stock (1983). However, the present results exhibit a 
peak value in the variation of the particle turbulence diffusivity with the particle time constant. 
In the absence of  gravity, the peak value occurs for particle time constants comparable to the 
Kolmogorov time scale. In the presence of gravity, the peak value for the particle difl'usivity is 
observed in the direction normal to the gravity direction. The value of the particle time constant 
at which the peak value occurs depends on the magnitude of the drift velocity. No apparent peak 
value is observed for the particle diffusivity in the gravity direction. In general, the particle 
diffusivity is very sensitive to the drift velocity. 

The effects of the constant rate evaporation on the particle velocity autocorrelation are studied 
for different initial particle time constants. The results show a decrease of the particle velocity 
autocorrelation with the increase of the evaporation rate for all the values of the initial particle 
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time constant. Variable rate evaporation results in polydispersity of drops. The effects of the initial 
drop time constant, the initial evaporation rate, and the drop Schmidt number on the probability 
density function (pdf) of the drop size are studied. Both cases with initially stationary and 
non-stationary particle velocities are considered. For cases with initially identical particle sizes it 
is found that after an initial transient period, the pdf of the particle size becomes Gaussian. The 
behavior of the pdf at long times depends on the particle size and the evaporation rate. In general, 
when the mean particle time constant becomes smaller than the Kolmogorov time scale, the pdf 
of the particle size starts to deviate from Gaussian. The extent of this deviation decreases with the 
decrease of the evaporation rate. The simulated results with different particle Schmidt numbers 
indicate an increase of the variance of T~, 2 with the increase of the Schmidt number. Also, the results 
show that the particle time constant is more influential than the particle Schmidt number in 
affecting the skewness of the particle sizes. 

The effects of the initial spray size on the distribution of the particle size are also studied. The 
results indicate significant deviations from Gaussian when the initial spray size is smaller than the 
flow integral length scale. The spray size displays a linear temporal growth which is indicative of 
a constant rate of diffusion. This rate appears to be approximately the same for all the cases 
considered here. In addition to the initially identical particle sizes, several cases are considered in 
which the initial sizes of the particles are selected from a Gaussian seed. For an initial constant 
spray size (0.28 times the flow integral scale) it is shown that a nearly perfect Gaussian behavior 
is achieved when the standard deviation of the initial particle size distribution is 0.07. This value 
changes with the initial mean particle time constant and the initial spray size. For an initial 
double-delta pdf of the drop size it is shown that a transition to Gaussian pdf is possible provided 
that the initial mean drop time constant is large and/or the initial standard deviation is small. 

At this point it is emphasized that the results presented here are based on simulations with several 
assumptions and simplifications as stated in section 2. These were necessary to make the problem 
computationally tractable with available resources. Some of these assumptions can be relaxed with 
improved computational capabilities. Future work is recommended in DNS of evaporating drop 
dispersion with two-way coupling, inclusion of compressibility effects, and modification of some 
of the coupling relations. It is also recommended to perform simulations with larger 
resolutions/realizations with data analysis coupled with consideration of preferential distribution 
of particles. The results generated thus far elucidate many important issues in regard to complex 
physics of drop dispersion in turbulent flows. These results motivate further extensions and 
utilizations of DNS for the analysis of more complex multiphase turbulent reacting flow systems. 
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